Strategies Converge on Target in Rare Leukemia

For most cells, more than two copies of the entire genome can be a telltale sign of cancer. But for megakaryocytes – bone marrow cells that can give rise to thousands of platelets – having several genomic copies is normal. In their healthy state, these cells can harbor as many as 64 copies of the full complement of human DNA, a state known as polyploidy. When the normal development of megakaryocytes goes awry, they can lose this unique feature and start down the path toward a rare form of cancer known as acute megakaryoblastic leukemia (AMKL). Researchers can spot these cellular changes, but the underlying causes – and how to reverse the course of disease – have been difficult to pinpoint. Read more.